
1.  Introduction
Air-sea coupling plays a key role in shaping Earth's climate and representing it correctly is essential for reducing 
the uncertainties in climate projections. Theoretical studies and satellite observations suggest that the mechanisms 
that control this coupling are strongly length- and time-scale-dependent. In mid-latitudes, synoptic-scale atmos-
pheric weather events drive turbulent heat flux (THF) variability at scales 𝐴𝐴 

(

10
3
)

 km via wind speed fluctuations 
and air-sea temperature and humidity anomalies. The generated THF anomaly results in a slow, lagged response 
from the oceans; for example, an initial warming THF anomaly is followed by heat loss from the oceans leading 
to cooling of the oceans on a timescale of several weeks (Xie, 2004). In contrast, at ocean mesoscales (10 1–10 3 
km), persistent and vigorous intrinsic eddy variability creates strong sea surface temperature (SST) anomalies 
and as the wind passes over them, strong air-sea temperature and humidity differences are generated that drive the 
THF variability (Hausmann et al., 2017). The interaction mechanism inherent to large scales has been confirmed 
in various idealized coupled model studies, such as Hasselmann (1976), Frankignoul and Hasselmann (1977), 
and  von Storch (2000), while the atmospheric response to the ocean dynamics at mesoscales has been the subject 
of more recent studies, for example, Wu et al. (2006), Smirnov et al. (2014), Bishop et al. (2017), and Patrizio 
and Thompson (2022).

Abstract  Air-sea flux variability has contributions from both ocean and atmosphere at different 
spatio-temporal scales. Atmospheric synoptic scales and the air-sea turbulent heat flux that they drive are well 
represented in climate models, but ocean mesoscales and their associated variability are often not well resolved 
due to non-eddy-resolving spatial resolutions of current climate models. We deploy a physics-based stochastic 
subgrid-scale parameterization for ocean density, that reinforces the lateral density variations due to oceanic 
eddies, and examine its effect on air-sea heat flux variability in a comprehensive coupled climate model. The 
stochastic parameterization substantially modifies sea surface temperature (SST) and latent heat flux (LHF) 
variability and their co-variability, primarily at scales near the resolution of the ocean model grid. Enhancement 
in the SST-LHF anomaly covariance, and correlations, indicate that the ocean-intrinsic component of the air-sea 
heat flux variability is more consistent with high-resolution satellite observations, especially in Gulf Stream 
region.

Plain Language Summary  Variations in air-sea heat fluxes arise from both ocean and atmosphere 
at different space and time scales. Studies suggest that at large scales, for example, thousands of kilometers, 
atmospheric processes drive the ocean variability at the surface, such as sea-surface temperature. However,  at 
smaller spatial scales, for example, [100−1,000] km, the oceans control the atmosphere variability near the 
air-sea interface. These local air-sea feedbacks influence both oceans and the atmosphere on various levels 
and are of significant dynamical importance. However, climate models typically use large grid spacing and 
fail to represent the air-sea interaction mechanism inherent to these small scales. We address this problem 
by modifying the ocean density using random noise at multiple places in the model before coupling it to the 
atmosphere. We chose density because it is used for multiple purposes in ocean models, and imperfections in 
it arise due to the missing subgrid-scale effects that can have a major impact all over the oceans, especially 
the upper ocean which interacts the most with the atmosphere. The proposed approach led to significant 
improvement in the air-sea interaction properties at various spatial scales compared to satellite observations.
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Most global climate models employ ocean models at a non-eddy-resolving or eddy-permitting resolution, and 
therefore do not resolve the ocean mesoscale eddies (10–100 km) and their respective impact on the air-sea flux 
variability. This is clearly problematic because studies have shown that the relative contributions of intrinsic 
oceanic and atmospheric variability in air-sea flux modulation bear enormous dynamical implications both for 
the oceans (Gaube et al., 2015; Guo et al., 2022; Jing et al., 2020; Ma et al., 2016) and the atmosphere (Kuo 
et al., 1991; Ma et al., 2017; Minobe et al., 2008; Williams, 2012). The reader is referred to Czaja et al. (2019) 
for a concise review of the state of knowledge of modeled atmospheric response to mid-latitude SST anomalies 
and their scale dependence. Midlatitude SST fluctuations on scales close to the ocean deformation scale (i.e., 
10–100 km) significantly affect the variability of the lower atmosphere (reviewed in Small et  al.  (2008) and 
Seo et  al.  (2023)) and the predictability of the midlatitude weather systems (Dunstone et  al.,  2016; Kirtman 
et al., 2017; Ma et al., 2017; Minobe et al., 2008; Siqueira & Kirtman, 2016). Contemporary studies involving 
ultra-high-resolution of the atmosphere are starting to divulge the physical mechanisms by which such small-scale 
oceanic variability is communicated to the troposphere above the atmospheric boundary layer (Foussard 
et al., 2019; Parfitt et al., 2016). These results underscore the importance of parameterizing/resolving such eddy 
variability to reduce the uncertainty in air-sea fluxes and their climatic impacts. Although numerous variables can 
be considered for this purpose in ocean/atmosphere system, we focused particularly on ocean density in this work.

Ocean density depends on temperature T, salinity S, and pressure p through a nonlinear equation of state (EOS); 
SGS fluctuations in T and S cause the grid-cell-averaged density to be different from that obtained by evaluating 
the EOS at the grid-cell-averaged values of T and S (pressure fluctuations are sub-dominant). Brankart (2013) 
first proposed a parameterization for these density errors and discussed their non-trivial global impacts. An alter-
native parameterization, which is more accurate and more computationally efficient, was proposed by Stanley 
et al. (2020) and tested in an ocean-only configuration by Kenigson et al. (2022). Whereas Kenigson et al. (2022) 
only tested the parameterization in the computation of the buoyancy force and associated hydrostatic pressure, 
we use this parameterization to correct density at three places in the ocean model: the hydrostatic pressure, 
isopycnal slopes in the Gent-McWilliams parameterization (hereinafter, GM; Gent & McWilliams, 1990), and 
the mixed-layer lateral buoyancy gradient in the mixed-layer restratification parameterization of Fox-Kemper 
et al. (2008).

In this study, we investigate the degree to which stochastic parameterizations of the mesoscale eddy effects can 
strengthen the ocean-intrinsic SST variability and its impact on air-sea THF variability. We note that while this 
particular parameterization of ocean density nonlinearity effects is physically well grounded, it does not attempt 
to account for all the subgrid-scale (SGS) processes that impact air-sea THF variability. A positive result here 
should be taken to be suggestive that further research on a broader range of stochastic parameterizations would 
be fruitful.

2.  Theory and Methods
2.1.  SGS Density Parameterization

The ocean density correction used in this paper derives from the Taylor expansion of the nonlinear EOS (denoted 
as 𝐴𝐴 𝐴𝐴𝐴 ) about the grid-cell average quantities. Following the notations of Stanley et  al.  (2020), the corrected 
grid-cell-mean density (denoted 𝐴𝐴 𝜌𝜌 ) is

𝜌𝜌 = 𝜌̂𝜌

(
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is the variance of unresolved SGS temperature. The stochastic parameterization proposed by Stanley et al. (2020) 
for 𝐴𝐴 𝐴𝐴
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Here 𝐴𝐴 ∇𝑇𝑇  is the lateral gradient of the resolved temperature field, δx is the horizontal grid size, ◦ is the Hadamard 
product, χ(x, y, t) is a depth-independent normally distributed random noise with zero mean and constant vari-
ance 𝐴𝐴 𝐴𝐴

2
𝜒𝜒 = 0.39 , and c is a tunable parameter. Stanley et al. (2020) performed a rigorous offline diagnostic for the 
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parameter c for different spatial resolutions of the target model and suggested c = 0.17 for our model resolution. 
However, following Kenigson et al. (2022) we increase this value to c = 0.33 to account for the weaker resolved 
temperature gradients in a coarse-model simulation compared to those obtained by coarsening a high-resolution 
simulation. The log-normal form of noise is chosen based on the statistical analysis of the residuals from the 
deterministic form (i.e., Equation 2 without the term e χ), and the multiplicative formulation is adopted to ensure 
the parameterized variance is always positive. Furthermore, χ is uncorrelated in space but has the following 
first-order autoregressive, or AR(1), structure in time

𝜒𝜒(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝜒𝜒(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 − 𝛿𝛿𝛿𝛿) + 𝜖𝜖(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥),� (3)

where ϵ(x, y, t) is a zero-mean Gaussian random noise with no correlations in space and time. The variance of ϵ 
varies with the AR(1) parameter ϕ(x, y, t) such that the process variance 𝐴𝐴 𝐴𝐴

2
𝜒𝜒 remains constant. Next, ϕ(x, y, t) is 

expressed using the decorrelation time scale (τ) of the local kinetic energy as

𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑒𝑒

𝛿𝛿𝛿𝛿

𝜏𝜏(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) ,
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where δt is the model baroclinic time step and τ is equal to

𝜏𝜏(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑘𝑘

√

𝛿𝛿𝛿𝛿2 + 𝛿𝛿𝛿𝛿2

𝑢𝑢2 + 𝑣𝑣2
.� (5)

Here u(x, y, t) and v(x, y, t) are the upper-ocean instantaneous velocities, and k = 3.7 is a tunable parameter whose 
value was estimated by Stanley et al. (2020). The decorrelation timescale τ essentially depends on the resolved 
fields, and the offline diagnostics have shown that it varies between a few days to several months for 2/3° resolu-
tion ocean model. The global map of the parameterized SGS temperature variance for a 2/3° resolution MOM6 
simulations stored as monthly mean is shown in Figure 1a (note the logarithmic scaling). It is easy to note that the 
variance is significantly higher in mid-latitude western boundary current (WBC) regions compared to the tropics 
(note the logarithmic scaling). This is due to the enormous lateral temperature gradients and strong mesoscale 
eddy variability present in those regions.

2.2.  Model and Observations

We evaluated the impact of the stochastic parameterization on air-sea interaction in a modified version of the 
fully coupled Community Earth System Model version 2.3 (CESM2; Danabasoglu et al., 2020). For these exper-
iments the ocean component of CESM2 was replaced by the Modular Ocean Model, version 6 (MOM6) which 
uses an Arbitrary Lagrangian-Eulerian vertical coordinate method (Adcroft et al., 2019; Griffies et al., 2020). 
The ocean model resolution is nominally 2°/3° (finer near the equator) with 65 target z* vertical levels (Adcroft 
& Campin, 2004) with finer vertical resolution near the ocean surface (2.5 m) and coarser toward the bottom 
(≈250 m) The model uses mesoscale eddy kinetic energy budget to set up the horizontal viscosity to parameterize 
harmonic lateral momentum mixing by unresolved eddies and uses the GEOMETRIC parameterization (Marshall 
et al., 2012) to set the GM parameterization coefficient κ. Explicit diapycnal mixing in the oceans due to convec-
tion and static instabilities is not permitted due to the hydrostatic approximation, but is parameterized using the 
K-profile parameterization (KPP) proposed in Large et al. (1994); restratification of the mixed layer is handled 
using the FFH parameterization (Fox-Kemper et al., 2008). The Wright EOS (Wright, 1997) is used to compute 
density as a function of pressure, temperature, and salinity.

MOM6 is coupled to Los-Alamos Sea Ice Model, version 5 (CICE5; Hunke et al., 2010) and the finite-volume 
Community Atmospheric Model Version 6 (CAM6; Danabasoglu et  al., 2020) where the atmospheric primi-
tive equations are discretized on 70 vertical levels and horizontal resolution of 0.95° × 1.25°. The atmosphere, 
sea-ice, and land communicate their fluxes and state information every 30 min via the CESM coupler. The air-sea 
fluxes are computed within the coupler on the ocean model grid and are passed to the atmospheric model every 
30 min and to the ocean model every hour. The model was run for a total of 100 years under the pre-industrial 
greenhouse gas conditions with and without the stochastic SGS density parameterization, referred to here as 
Stoch and Control, respectively. This study analyzes monthly means from the last 35 years of both experiments. 
We used monthly mean products because mesoscale ocean eddy variability is strongest on monthly to annual time 
scales, and the employed eddy parameterization can be expected to produce notable impacts on these frequencies.
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Observations of SST and surface heat fluxes used in this paper for comparison with the model experiments 
are taken from a remote-sensing-based third-generation ocean flux data set, abbreviated J-OFURO3 (Tomita 
et al., 2019; hereinafter, also referred to as OBS). It provides datasets for surface heat, momentum, freshwa-
ter fluxes, and the associated physical parameters over the ice-free global oceans from 1986 to 2017 in daily 
and monthly mean temporal resolutions with 0.25° spatial resolution. J-OFURO project computes the turbu-
lent surface fluxes using a bulk method where all physical parameters are satellite-derived except the 2 m air 
temperature. The latest version, that is, J-OFURO3, is a significant advancement over its predecessors as it 
uses state-of-the-art algorithms to estimate near-surface specific humidity and employs advanced techniques to 
combine multi-satellite sensor outputs. In addition, rigorous and systematic validations against the in-situ obser-
vations and other datasets ensure more accuracy for J-OFURO3. The OBS version 1.1 monthly mean products 

Figure 1.  Illustration of the characteristics of the SGS density parameterization, model, and observations: (a) Spatial pattern 
of the parameterized SGS sea surface temperature (SST) variance in log10 scale (the color bar denotes exponents of 10); (b 
and c) Standard deviation of monthly anomalies of SST and latent heat flux, respectively, from Community Earth System 
Model version 2.3-Modular Ocean Model, version 6 Stoch simulation; (d and e) Same as (b and c) but for the J-OFURO3 
observations for the period 2000–2015.
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are available from 1988 to 2017, but we only used the years 2000–2015 in this paper which are more robust as the 
corresponding daily data contains no spatial gaps.

For a basic illustration of the OBS and model outputs, standard deviations of the monthly anomalies of SST and 
latent heat flux (LHF) from the Stoch simulation and OBS are shown in Figures 1b–1e. While the spatial patterns 
of the SST and LHF variability are similar for both, the magnitude of the variability differs across them. This 
is especially true near the ocean jets and currents, such as Gulf Stream (GS), Kuroshio, Oyashio, Agulhas, and 
Brazil-Malvinas confluence (BMC), which are the areas of focus in this study. These major jets and currents 
generally show a stronger SST/LHF variability in OBS than in the CESM-MOM6 simulation. The Kuroshio is an 
exception to this, as the Stoch simulation possesses stronger and more eastward extended SST variability in this 
region (compare Figures 1b and 1d). This is a known bias related to the convergence of the mean kinetic energy 
and the largest SST gradient regions (Thompson & Kwon, 2010). Additionally, Stoch possesses significantly 
higher LHF variability around the Labrador and Irminger seas region, which is speculated to be driven by excess 
SST variability in this region, but the exact reasons are unknown at this point. Nevertheless, the generally reduced 
variance around the jets in model simulations is due to their coarse spatial resolution, which leads to substan-
tially less eddy variability in these turbulent regions (illustrated in Figure S1 in Supporting Information S1) and 
suppresses their large-scale feedback.

2.3.  Analysis Methods

In this paper, we consider the LHF and SST for all our analyses. We focus on the LHF component of the net 
surface heat flux because several previous studies have shown that latent heat dominates the net surface heat flux 
response to the SST (Frankignoul & Kestenare, 2002; Hausmann et al., 2017; Park et al., 2005). In CESM simu-
lations, LHF is computed using a bulk flux formula—proportional to the air density, wind speed, and difference 
in the specific humidity saturated at the ocean surface (strongly dependent on SST) and of the air. The Stanley 
parameterization influences LHF indirectly through the resolved variables for the oceans in the bulk formula.

This paper focuses on local air-sea interactions and studies the changes produced therein by the stochastic SGS 
density parameterization. As discussed in Section 1, at ocean mesoscales, the LHF variability is driven by intrin-
sic SST variability, led by the mesoscale eddies. We call this SST variability intrinsic because it is not forced 
by air-sea heat flux anomalies unlike in the case of slow SST variations over large spatial scales. As a result of 
ocean-driven LHF variability, large outgoing heat flux is noticed over warm SST anomalies, and less heat flux 
is seen departing over the colder SST anomalies (Small et al., 2008, 2019). This suggests a positive instantane-
ous correlation between SST and LHF, where the outgoing heat flux from the oceans is considered positive and 
incoming is considered negative. In contrast, at large scales (e.g., ocean basin size), the air is more in equilibrium 
with the slow-varying SST beneath it and leads to situations where significant outgoing heat flux from the oceans, 
driven by atmospheric forcing, is seen to cool the oceans. This refers to lagged SST (or, ocean) response to 
air-sea heat flux variations, that is, small instantaneous SST-LHF correlation but large ∂(SST)/∂t-LHF correlation 
(Bishop et al., 2017; Small et al., 2019; Wu et al., 2006).

Throughout this paper, we will use the term “instantaneous correlation” to refer to the simultaneous SST-LHF 
correlation and “tendency correlation” to refer to the ∂(SST)/∂t-LHF correlations. We use these two types of 
correlations to infer the dominant forcing in the ocean-atmosphere feedback mechanism, that is, (a) if the instan-
taneous correlation is large, it suggests the oceans (precisely, SST) forcing the atmosphere (or, LHF variability), 
whereas (b) if ∂(SST)/∂t-LHF is large, it means the atmosphere is driving the oceans. While (a) is believed to 
hold true at small scales, (b) is supposed to be the case at large scales. Because the SGS density parameterization 
corrects the ocean density on ocean mesoscales, it is expected to influence small-scale instantaneous correlations 
more significantly than large-scale tendency correlations, as synoptic-scale atmospheric processes are already 
well resolved in climate models. It must be noted that the 2°/3° ocean model resolution does not resolve the 
mesoscales, so the direct impact of ocean mesoscales on LHF variability must be absent from the model. But 
ocean mesoscales induce ocean-intrinsic variability at larger scales, which are resolved, and we hope to represent 
some of this effect using the stochastic parameterization.

To study the scale dependence of local correlations, we use a spatial filter on the original fields to separate the 
eddying part from its large-scale counterpart. We use a fast, efficient Python package named GCM-Filters (Loose 
et al., 2022), which achieves filtering using an iterative application of a discrete Laplacian, resembling diffusion 
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(Grooms et al., 2021). We use the Taper filter shape (Grooms et al., 2021), which makes a sharper distinction 
between large and small scales than Gaussian or boxcar filters; we use filtering length scales from 200 to 800 
km with 100 km interval. Although the term “eddy” is frequently used to describe the small-scale part of a field 
produced by a high-pass spatial filter, we use the term sub-filter scale (SFS) to avoid confusion, since our model 
does not resolve mesoscale eddies. We use the monthly mean anomalies, obtained by subtracting the monthly 
climatology and the linear trend (for both SST and LHF).

3.  Results
In this section, we diagnose the impact of the SGS stochastic density corrections on the variability and 
co-variability of SST and LHF and pinpoint the gains/losses by comparing against the J-OFURO3 observational 
outputs. We also make efforts to explain the identified parameterization impacts from a physical perspective.

3.1.  Sub Filter Scale Variability and Co-Variability

To elucidate the impact of the SGS density parameterization on variability across scales, we provide the differ-
ence in the standard deviations of the SFS SST from Stoch and Control runs (Figure 2). We also study this differ-
ence (Stoch-Control) for SFS SST-LHF covariance to demonstrate the effects on SST-LHF co-variability. The 
SFS fields here are obtained using the 500 km filter scale. Because the parameterization is mostly active near the 
areas of strong temperature fronts (see Figure 1a), we only focused on four most prominent frontal regions: the 
GS and Kuroshio in the northern hemisphere, and the Agulhas and BMC in the southern hemisphere. Note that 
the SFS variability patterns are not expected to be the same as in Figure 1a because the latter shows temperature 
variability over scales smaller than the model grid size, whereas the SFS variability is over the scales between the 
model grid size and the filter scale.

The density corrections produced by the parameterization significantly affect the SFS SST variability—as much 
as 40%–50% change in their standard deviation relative to the Control—in all four regions (Figure 2, left column). 
The magnitude of the change is higher for the GS and Kuroshio regions than the other two. An increase/decrease 
in variability in the form of a red/blue dipole suggests that the parameterization is making dynamical adjustments 
by changing the positions of the mean currents (cf. Kenigson et al., 2022).

In the case of the GS, an increase in SFS variability is clear in the eastward extension portion of the jet between 
35° and 45°N and 30°–60°W. This is a prominent feature of the parameterization, as several previous idealized 
studies have shown that mesoscale eddying features are paramount to producing an eastward extension of jets 
(Agarwal et al., 2021; Shevchenko & Berloff, 2015). However, either a minimal increase or a decrease in the 
variability is seen around the far-east extension of the jet. A region of significantly reduced SFS SST variability 
is present around the Irminger and Labrador seas between 50° and 60°N and 30°–50°W. This is associated with 
an increase in mixed-layer depth in this region (not shown), which increases the heat capacity of the mixed-layer 
column, leading to a decrease in the variation of the surface temperature as more heat is now required to change 
the surface temperature.

The Kuroshio extension mostly witnesses a decrease in the SFS SST variability, especially around the continental 
boundaries and around the eastward extension. A dipole is visible around the separation location, which hints at a 
northward shift in the course of the jet. In the Agulhas and BMC regions, the magnitude of the difference is much 
smaller than in the other two regions, but the percentage change is nearly the same (compare the color scales 
with the overlaid contours). The most prominent pattern is a region of decreased SST variability around the BMC 
between 30° and 60°W and 35°–45°S. This is likely related to the seasonal southward shift of the South Atlantic 
Current that Kenigson et al. (2022) found when analyzing the effects of this parameterization in a forced-ocean 
simulation (note, the variance attached to this seasonal shift would be present even though the seasonal mean is 
removed). We also analyzed the difference (Stoch-Control) in the standard deviation of SFS LHF, but they were 
qualitatively the same (Figure S2 in Supporting Information S1) as LHF variability is forced by SST anomalies 
at these scales. Note, that the patterns in Figures 1a and 2 do not resemble each other because they represent 
temperature variability over different ranges of scales and, therefore, are fundamentally different.

Next, we analyze the Stoch-Control difference in the SST-LHF covariance (Figure 2, right column). The impact 
of the parameterization is much more robust and organized in the case of SST-LHF co-variability, as the patterns 
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Figure 2.  Manifestation of the influence of the stochastic parameterization on sub-filter scale sea surface temperature (SST) variability and SST-latent heat flux 
co-variability over scales smaller than 500 km. The left column shows the difference in the standard deviation of sub-filter scale SST (in °C) from Stoch and Control 
simulations in the Gulf Stream, Kuroshio, Agulhas, and Brazil-Malvinas Confluence (top to bottom) regions. The right column shows this difference (Stoch-Control) 
for the SST-LHF covariance (°C.W/m 2). The overlaid contours denote the respective quantities for the Control experiment; the contour levels are [0.2,0.6] and [2,4] in 
the left and right columns, respectively. The green stars denote the locations picked for the analysis in Section 3.2 and in Supporting Information S1.
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strongly delineate the local current systems in all four regions. Furthermore, the Stoch-Control output is predom-
inantly positive, meaning the parameterization is increasing the SST-LHF co-variability globally. The magnitude 
of the impact is also much higher on SST-LHF co-variability than on the variability of the individual components, 
especially in the GS and Kuroshio regions, where several locations experience more than a doubling in their 
covariance magnitude. Physically this means that the parameterization is boosting the intrinsic SST variability 
and its feedback to the THF following the oceans-forcing-atmosphere mechanism at small scales.

3.2.  Correlations and Transition Scales

Here we discuss the local instantaneous and tendency correlations (as described in Section 2.3) and the associated 
transition scales for the low-pass fields. The transition length scale is the filter width at which the instantaneous 
and tendency correlation magnitudes intersect (Bishop et al., 2017). We compute the correlations and the transi-
tion scales for both Control and Stoch simulations and compare them against OBS. Here, we focus only on the GS 
region, as it is dynamically rich, possesses much less systematic model bias, and shows the highest impact relative 
to the other WBC locations. We aim to establish the physical significance of the parameterized density perturba-
tions by studying their influence on large-scale patterns' correlations and the associated transition length scale at 
which the THF variability changes from ocean-driven to atmospheric-driven. The local correlation relationships 
discussed here belong to the location marked by the green star in Figure 2 top row. This and the other marked 
locations in Figure 2 have two key properties: (a) they possess high SFS SST variability (cf. the SFS SST stand-
ard deviation contours in Figure 2), and (b) the parameterization made a significant change in SFS variability at 
these locations. A global visualization of the instantaneous and tendency correlations for differing filter sizes is 
provided in supplementary Figures S5 and S6 in Supporting Information S1. To mark the statistical significance 
of the local correlations and the differences therein between Control, Stoch, and OBS, we compare their 95% 
confidence intervals (CIs)—obtained using the Bootstrapping method (Menke & Menke, 2016; Tibshirani & 
Efron, 1993).

At the chosen GS location, the median value of the instantaneous correlation for Stoch is equal or higher than 
Control for all filter lengths (Figure  3a), whereas the tendency correlation is much lower than the Control 
(Figure 3b). We checked several other locations in this region and found qualitatively similar results. Physically 
this means that the parameterization is indirectly boosting the ocean-intrinsic component of the THF varia-
bility and diminishing the atmospheric-forced fraction across various scales in this region. Furthermore, the 
augmentation of ocean-forced THF variability by the stochastic parameterization is consistent with OBS, as the 
Control instantaneous (tendency) correlations are much smaller (higher) than OBS for nearly all filter sizes at 
this mesoscale-eddy-rich location. Similar is also true for the Kuroshio, Agulhas, and BMC locations (Figure 
S3 in Supporting Information S1) with Kuroshio showing a much stronger consistency with OBS compared to 
the other two. The better results for GS and Kuroshio regions compared to Agulhas and BMC are mainly due to 
poorly resolved SST and LHF variability in the latter regions, resulting in a much weaker impact of the param-
eterization (see Figure 1a). Similar to correlations, we also studied covariances and it also provided identical 
results, highlighting the comparable strength of the correlated variability resolved by Stoch and OBS (Figure 
S7 in Supporting Information S1). Modifications in the correlations by the stochastic parameterization are most 
pronounced for filter sizes up to 500 km, as the spatial scales beyond this filter width are nearly resolved in both 
Stoch and Control, and the associated variability is mostly atmospheric-driven.

Finally, we analyze the transition length at which the LHF variability switches from ocean-driven to 
atmospheric-driven. Grid-point-wise transition scales were computed for all locations in the GS region using the 
Control, Stoch, and OBS outputs and are provided in Figures 3c–3e (see Figure S4 in Supporting Information S1 
for other WBC regions). The most notable distinction between Stoch and Control is that the induced stochastic 
parameterization resolves the transition lengths for several locations around the eastward extension of the jet 
(45°–60°W, 40°–45°N), which are also comparable with the OBS. For example, at the location marked by the 
green star, the addition of the stochastic parameterization increases the transition scale from ≈70 km (not shown) 
to ≈ 350 km, which is closer to the OBS value of ≈550 km. Off the GS extension, locations are mostly atmospher-
ically driven at the grid scale, and therefore the transition length scale is undefined. Despite the improvements, 
Stoch does not resolve all transition scales in the GS region as marked in the OBS, perhaps because the stochastic 
parameterization only accounts for one process (density variations), whereby ocean mesoscales induce variability 
at larger scales and in other quantities too.
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4.  Conclusions and Discussion
We implemented a physics-based stochastic SGS parameterization for ocean density in a CESM-MOM6 coupled 
climate model and studied its impact on air-sea THF variability, primarily LHF. Past studies have shown that the 
air-sea flux variability is driven by oceanic-intrinsic variability at ocean mesoscales and by synoptic-scale atmos-
pheric processes at larger scales, for example, 𝐴𝐴 (1000) km. However, due to the spatial resolution of non-eddying 
ocean climate models, the air-sea flux variability due to intrinsic oceanic turbulence is not well represented. 
Here, we show that an SGS density parameterization reinforces the ocean-intrinsic air-sea THF variability across 
turbulent, eddy-rich regions, such as western boundary currents and the adjacent re-circulation zones. To our 
knowledge, this study is the first to confirm the efficacy of using a systematic physics-based SGS parameteriza-
tion to provide a source of intrinsic ocean-driven THF variability in a non-eddy-resolving comprehensive coupled 
climate model.

Figure 3.  Comparison of the scale dependence of local correlations, their confidence intervals (CIs), and transition scales for Stoch, Control, and OBS in the Gulf 
Stream (GS) region: (a) 95% CIs of local instantaneous correlations for the GS location marked by the green star in Figure 2 top row; (b) same as (a) but for tendency 
correlations; (c–e) comparison of spatial maps of the transition scales for Control, Stoch, and OBS. Locations marked in white are atmospheric-forced at the grid scale, 
and therefore the transition scale is not defined for them. In (a and b), the circles in the middle of the whiskers denote the median values, and the green star in (c–e) 
denote the same GS location in Figure 2 top row.



Geophysical Research Letters

AGARWAL ET AL.

10.1029/2023GL104248

10 of 12

Our analysis focuses on four WBC regions—GS, Kuroshio, Agulhas, and BMC—and involves SFS fields 
obtained using a highly scale-selective spatial filter. The parameterization increases SFS SST and LHF varia-
bility around the western boundary current regions, as several locations display more than 30% increase in their 
standard deviation (Figure  2). The SFS SST-LHF co-variability is also significantly enhanced globally, with 
places around the mean boundary currents experiencing more than a doubling in their SST-LHF co-variances. 
Instantaneous SST-LHF correlations and ∂SST/∂t—LHF tendency correlations as a function of the filter scale 
revealed the impact of the parameterization on large-scale SST-LHF co-variability and the associated transition 
scales. We established that the changes in the SFS SST and LHF variances produced by the parameterization 
are physically sound as they inverse cascade to larger scales and yield substantial modifications in the SST-LHF 
correlations and, therefore, the transition scales, for low-pass fields, which were found consistent with the 
high-resolution J-OFURO3 observations. This is strongly the case in the GS region; the other boundary current 
regions were found less affected by the imposed parameterization, which is likely due to the fact that the param-
eterization has very little eddy SST variability in these regions to start with. An underestimation of the surface 
heat flux comes as a linear response to weak mesoscale SST variability in these regions in the parameterized 
run. Although the high-/low-pass fields used in this paper are obtained using the Taper filtering kernel following 
Grooms et al. (2021), a Gaussian filtering kernel was also tested. The latter resulted in qualitatively similar results 
with a slight drop in the instantaneous SST-LHF correlations and an increase in the ∂(SST)/∂t—LHF tendency 
correlations; therefore, our results are robust to filtering kernels. The comparison of a pre-industrial climate 
simulation to modern observations is a limitation of this study. Nevertheless, the conclusion that the stochastic 
parameterization leads to increases in ocean-intrinsic air-sea heat flux variability is not likely to be sensitive to 
climate changes.

This work has significant potential for further advancements. One possible line of extension is a systematic study 
of seasonal dependence of the correlations and the transition length scales while focusing on their physical mech-
anisms. Another possible refinement is to make the whole study more consistent by considering a CESM-MOM6 
simulation with a spatial resolution closer to the observations (1°/4° here). Presently the observations have much 
more spatial scales resolved and higher variance across scales than the model output. It may also be valuable to 
develop a physics-based stochastic parameterization for small-scale air-sea flux variability by directly manipu-
lating bulk flux formulas, which possess significant covariability among its constituent variables—all interacting 
in a nonlinear fashion.

Data Availability Statement
The CESM-MOM6 outputs and the Python analysis scripts used in this work are available publicly in the Zenodo 
repository: https://doi.org/10.5281/zenodo.7359120. The J-OFURO3 observations are available for download 
from the official J-OFURO project website (https://www.j-ofuro.com/en/dataset/entry-323.html).
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